Characterizing the spread of CoViD-19


Since the beginning of the epidemic, daily reports of CoViD-19 cases, hospitalizations, and deaths from around the world have been publicly available. This paper describes methods to characterize broad features of the spread of the disease, with relatively long periods of constant transmission rates, using a new population modeling framework based on discrete-time difference equations. Comparative parameters are chosen for their weak dependence on model assumptions. Approaches for their point and interval estimation, accounting for additional sources of variance in the case data, are presented. These methods provide a basis to quantitatively assess the impact of changes to social distancing policies using publicly available data. As examples, data from Ontario and German states are analyzed using this framework. German case data show a small increase in transmission rates following the relaxation of lock-down rules on May 6, 2020. By combining case and death data from Germany, the mean and standard deviation of the time from infection to death are estimated.

Dean Karlen
Dean Karlen
R.M Pearce Professor of Physics, University of Victoria and TRIUMF